๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

728x90

ํ”„๋กœ์ ํŠธํ˜•AI์„œ๋น„์Šค๊ฐœ๋ฐœ

4/12 ํ™” ํ™”์š”์ผ! ํ˜„์žฌ์˜ Deep Learning์ด ์–ด๋А ์ •๋„ ํšจ์œจ์„ ๋‚ด๊ธฐ ์‹œ์ž‘ํ•œ ์ด์œ ์— ๋Œ€ํ•ด ๊ณต๋ถ€ํ•œ๋‹ค. Weight์™€ Bias๋ฅผ ๋žœ๋ค ์ดˆ๊ธฐ๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•˜๋˜ ๊ฒƒ์„ Xievier/He's Initialization์œผ๋กœ ๋Œ€์ฒดํ•˜๊ณ , Vanishing Gradient ํ˜„์ƒ์„ Back-Propagation(ํ–‰๋ ฌ์—ฐ์‚ฐ, ์—ญ์˜ ๋ฐฉํ–ฅ์œผ๋กœ W, b๋ฅผ Update)๊ณผ Activation ํ•จ์ˆ˜๋ฅผ Sigmoid ๋Œ€์‹  ReLU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ๊ณ„์‚ฐํ•ด์•ผ ํ•˜๋Š” W, b๋ฅผ Drop-out์œผ๋กœ ์—ฐ์‚ฐ์— ์‚ฌ์šฉ๋˜๋Š” Node๋ฅผ ์ค„์ž„์œผ๋กœ์จ ํ•ด๊ฒฐํ•จ 1. Multinomial Classification by Tensorflow 1.15 ver. import numpy as np import pandas as pd import tensorflow as tf imp.. ๋”๋ณด๊ธฐ
4/11 ์›” ์›”์š”์ผ! ์˜ค๋Š˜์€ ๋”ฅ๋Ÿฌ๋‹๊ณผ ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•ด ๋ฐฐ์šด๋‹ค! Perceptron์€ Neuron ํ•œ ๊ฐœ Deep Learning : ํ•œ ๊ฐœ์˜ Logistic Regression์„ ํ‘œํ˜„ํ•˜๋Š” node๊ฐ€ ์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š” ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๊ฐœ์˜ ์ž…๋ ฅ์ธต, ํ•œ ๊ฐœ ์ด์ƒ์˜ ์€๋‹‰์ธต(๋งŽ์„์ˆ˜๋ก ํ•™์Šต์ด ์ž˜ ๋จ. 1~3๊ฐœ๊ฐ€ ์ ๋‹น), ํ•œ ๊ฐœ์˜ ์ถœ๋ ฅ์ธต์œผ๋กœ ์ด๋ฃจ์–ด์ง feed forward(propagation). XOR ๋ฌธ์ œ๋Š” node ํ•œ ๊ฐœ(perceptron)๋กœ๋Š” ํ•™์Šต์ด ์•ˆ ๋จ 1. Perceptron. GATE ์—ฐ์‚ฐ(AND, OR, XOR ์—ฐ์‚ฐ์ž)์„ Logistic Regression๊ณผ Tensorflow 1.5 Ver.์œผ๋กœ ๊ตฌํ˜„ import numpy as np import tensorflow as tf from sklear.. ๋”๋ณด๊ธฐ
4/8 ๊ธˆ ๊ธˆ์š”์ผ! ๐Ÿฑ‍๐Ÿ ์˜ค๋Š˜์€ Regression์„ ๋๋‚ธ๋‹ค~~ 4/11 ์›”์š”์ผ์€ ๋จธ์‹ ๋Ÿฌ๋‹ ํ•„๋‹ต ํ‰๊ฐ€, 4/17 ์ผ์š”์ผ์€ ์ˆ˜ํ–‰ํ‰๊ฐ€ 4๊ฐ€์ง€ ์ œ์ถœ์ด ์žˆ๋‹ค. ๊ฒฐ์ธก์น˜ ์ฒ˜๋ฆฌ๋Š” ์‚ญ์ œํ•˜๊ฑฐ๋‚˜, imputation(๋ณด๊ฐ„, ๋Œ€์ฒด) - ํ‰๊ท ํ™” ๊ธฐ๋ฒ•(๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ๋Œ€ํ‘œ๊ฐ’์œผ๋กœ ๋Œ€์ฒด), ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•(์ข…์†๋ณ€์ˆ˜๊ฐ€ ๋Œ€์ƒ. KNN) KNN(K-Nearest Neighbors, K-์ตœ๊ทผ์ ‘ ์ด์›ƒ) : hyperparameter๋Š” k(=1์ผ ๋•Œ ์–ด๋А ์ •๋„์˜ ์„ฑ๋Šฅ ๋ณด์žฅ)์™€ ๊ฑฐ๋ฆฌ์ธก์ • ๋ฐฉ์‹(์ฃผ๋กœ ์œ ํด๋ผ๋””์•ˆ ์‚ฌ์šฉ) ๋ฐ˜๋“œ์‹œ ์ •๊ทœํ™”๋ฅผ ์ง„ํ–‰ํ•ด์•ผ ํ•จ. ๋ชจ๋“  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆด ์ˆ˜ ์žˆ์Œ 1. Logistic Regression + KNN - BMI data import numpy as np import pandas as pd fro.. ๋”๋ณด๊ธฐ
4/7 ๋ชฉ ๋ชฉ์š”์ผ! ์˜ค๋Š˜๋„ Multinomial Classification๋ฅผ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์ œ(MNIST)๋ฅผ ํ†ตํ•ด ๋ฐฐ์šด๋‹ค~ ์†์œผ๋กœ ์“ด ์ˆซ์ž๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ๋Œ€ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค~ MNIST ์ด๋ฏธ์ง€๋Š” ๊ทธ ์ž์ฒด๊ฐ€ 2์ฐจ์›์ด๊ณ  ๊ทธ๋Ÿฐ ๊ฒŒ ์—ฌ๋Ÿฟ์ด๊ธฐ ๋•Œ๋ฌธ์— 3์ฐจ์›. ์ด๋ฏธ์ง€๋ฅผ 1์ฐจ์›์œผ๋กœ ravel() ํ•ด์•ผ ํ•จ https://www.kaggle.com/competitions/digit-recognizer/data?select=test.csv Digit Recognizer | Kaggle www.kaggle.com Tensorflow Ver. 1.15์€ ๋ฐฐ์šด ์ด๋ก ์„ ์ฝ”๋“œ๋กœ ์ดํ•ดํ•˜๊ธฐ์—๋Š” ์ข‹์ง€๋งŒ ์ฝ”๋“œ๊ฐ€ ๋„ˆ๋ฌด ์–ด๋ ต๋‹ค. 1. Multinomial Classification by Tensorflow Ver. 1.15 - MNIST import nump.. ๋”๋ณด๊ธฐ
4/6 ์ˆ˜ ์ˆ˜์š”์ผ! ์˜ค๋Š˜์€ Multinomial Classification์„ ๋ฐฐ์šด๋‹ค. Linear Regression(์—ฐ์†์ ์ธ ์ˆซ์ž ๊ฐ’ ์˜ˆ์ธก)์ด ๋ฐœ์ „ํ•œ ๊ฒƒ์ด Logistic Regression → Classification(๋ถ„๋ฅ˜๋ฅผ ํŒ๋‹จํ•˜๋Š” ์˜ˆ์ธก) - Binary Classification(์ดํ•ญ๋ถ„๋ฅ˜) - Multinomial Classification(๋‹คํ•ญ๋ถ„๋ฅ˜) Logistic Regression์€ ์ด์ง„ ๋ถ„๋ฅ˜์— ํŠนํ™”๋จ SKlearn์ด ์ œ๊ณตํ•˜๋Š” ๋ถ„๋ฅ˜๊ธฐ์ธ Gradient Descent(๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•)๊ฐ€ ๋ฐœ์ „ํ•œ ํ˜•ํƒœ์ธ SGD Classifier(Stochastic Gradient Descent, ํ™•๋ฅ ์  ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•) 1. Binary Classification - ์œ„์Šค์ฝ˜์‹  ์œ ๋ฐฉ์•” ๋ฐ์ดํ„ฐ by Gradient Descent Cl.. ๋”๋ณด๊ธฐ
4/5 ํ™” ํ™”์š”์ผ! Logistic Regression์„ ํ™œ์šฉํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ์ง„ํ–‰ ์‹œ ์ฃผ์˜์‚ฌํ•ญ์„ ์•Œ์•„๋ณธ๋‹ค. ์•ž์œผ๋กœ ์šฐ๋ฆฌ๋Š” Classification(์ดํ•ญ๋ถ„๋ฅ˜)์˜ Metrics๋กœ Accuracy๋ฅผ ์‚ฌ์šฉํ•  ์˜ˆ์ •์ด๋‹ค. ๋ชจ๋ธ ํ‰๊ฐ€ ์ „ ๊ณ ๋ คํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ๋“ค 1. learning rate(ํ•™์Šต๋ฅ ) : loss ๊ฐ’์„ ๋ณด๋ฉด์„œ ํ•™์Šต๋ฅ ์„ ์กฐ์ •ํ•ด์•ผ ํ•จ. ๋ณดํ†ต 1์˜ ๋งˆ์ด๋„ˆ์Šค 4์Šน์œผ๋กœ ์žก์Œ ํ•™์Šต๋ฅ ์ด ๋„ˆ๋ฌด ํฌ๋‹ค๋ฉด global minima(W')๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†๊ฒŒ ๋จ → OverShooting ๋ฐœ์ƒ ํ•™์Šต๋ฅ ์ด ์•„์ฃผ ์ž‘๋‹ค๋ฉด local minima ์ฐพ๊ฒŒ ๋จ 2. Normalization(์ •๊ทœํ™”) : MinMax Scaling - 0 ~ 1. ์ด์ƒ์น˜์— ๋ฏผ๊ฐํ•จ Standardization - ํ‘œ์ค€ํ™”, Z-Score. ์ƒ๋Œ€์ ์œผ๋กœ ์ด์ƒ์น˜์— ๋‘”๊ฐํ•จ, ๋ชจ๋“  ์นผ๋Ÿผ์—.. ๋”๋ณด๊ธฐ
7ํšŒ ์ฐจ | 4/4 ์›” 7ํšŒ ์ฐจ! ๋ฒŒ์จ ์Šคํ„ฐ๋”” 4์ฃผ ์ฐจ๋‹ค~ ์ฒซ์งธ ์ฃผ๋Š” ํƒ€์ดํƒ€๋‹‰, ๋‘˜์งธ ์ฃผ๋Š” MovieLens EDA · ์‹œ๊ฐํ™” · ๊ธฐ์ˆ ํ†ต๊ณ„, ์…‹์งธ ์ฃผ๋Š” ์บ๊ธ€ ๋ฐ ๋ฐ์ด์ฝ˜์˜ ์˜ˆ์ œ ํ˜น์€ ๊ฐ์ž ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์ง„ํ–‰ํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋กœ์ ํŠธ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋ฒˆ ์ฃผ๋Š” ์ง€๋‚œ๋ฒˆ์— ์ˆ˜์ •ํ•œ ์ปค๋ฆฌํ˜๋Ÿผ์— ๋”ฐ๋ผ ๋ฉ€์บ  ์ฃผ๊ฐ„ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ์ธ๊ณต์‹ ๊ฒฝ๋ง์„ ๋ณต์Šตํ•˜๊ณ  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ณต๋ถ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€๋‹ฅ์„ ์žก์•˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•„์ง ์„ฑ๋Šฅํ‰๊ฐ€(Metrics)๋ฅผ ๋ฐฐ์šฐ๊ณ  ์žˆ์–ด, ์•„์ง ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ์ง„๋„๊ฐ€ ๋‚˜๊ฐ€์ง€ ์•Š์•˜๋‹ค. ๋‚ด์ผ๊นŒ์ง€ ์ œ์ถœํ•ด์•ผ ํ•˜๋Š” ์ˆ˜ํ–‰ํ‰๊ฐ€๋„ ์žˆ์–ด, ์ด์— ๋Œ€ํ•œ ๊ฐ์ž์˜ ์ง„ํ–‰ ์ƒํ™ฉ์„ ๋ฆฌ๋ทฐํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋Œ€์ฒดํ–ˆ๋‹ค. (๋ฐ์ดํ„ฐ ๋ถ„์„, ๋ฐ˜๋ณต๋ฌธ, ๋ถˆ๋ฆฐ ์ธ๋ฑ์‹ฑ, ์ „์ฒ˜๋ฆฌ, ์ •๊ทœํ™”, ๊ฒฐ์ธก์น˜ · ์ด์ƒ์น˜ ์ฒ˜๋ฆฌ ๋“ฑ ์Šคํƒ€์ผ์ด ๋‹ค ๋‹ค๋ฅด๋‹ค. ์ฐธ๊ณ ํ•ด์„œ ์ตœ์ ์˜ ๋ฐฉ๋ฒ•์„ ์ตํžˆ์ž) ์šด์˜์ง„ ํšŒ์˜๋ฅผ ๊ฑฐ์ณ ์ •ํ•œ ์ปค.. ๋”๋ณด๊ธฐ
4/4 ์›” ์›”์š”์ผ! ์˜ค๋Š˜์€ ๊ธˆ์š”์ผ์— ์‹ค์Šต ์˜ˆ์ œ๋กœ ์ฃผ์–ด์กŒ๋˜ admission(๋Œ€ํ•™์› ํ•ฉ๊ฒฉ ์—ฌ๋ถ€) ๋ฐ์ดํ„ฐ์…‹์„ Sklearn, Tensorflow๋กœ ๊ตฌํ˜„ํ•˜๊ณ , ์ง€๋‚œ์ฃผ์— ๋ฐฐ์šด Logistic Regression์„ ํ™œ์šฉํ•ด ํ‰๊ฐ€์ง€ํ‘œ(Metrics)๋ฅผ ์•Œ์•„๋ณธ๋‹ค. 1. Logistic Regression by Sklearn import numpy as np import pandas as pd import tensorflow as tf from sklearn import linear_model from sklearn.preprocessing import MinMaxScaler from scipy import stats import matplotlib.pyplot as plt import warnings warnings.filter.. ๋”๋ณด๊ธฐ

728x90