๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

728x90

DataFrame

3/21 ์›” ์›”์š”์ผ! ์˜ค๋Š˜์€ Pandas์˜ DataFrame(DataFrame ์—ฐ๊ฒฐ · ๊ฒฐํ•ฉ, Mapping, Grouping)์„ ๋งˆ๋ฌด๋ฆฌ ์ง“๊ณ , ๋‚ด์ผ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐํ™”์— ๋Œ€ํ•ด ๋ฐฐ์šด๋‹ค. 1. DataFrame ์—ฐ๊ฒฐ : pd.concat(). default๋Š” ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ ์—ฐ๊ฒฐ. ์ปฌ๋Ÿผ ๋ช…์ด ๊ฐ™์€ ๊ฒƒ๋“ค์ด ์„œ๋กœ ๊ฒฐํ•ฉ๋จ import numpy as np import pandas as pd df1 = pd.DataFrame({'a':['a0', 'a1', 'a2', 'a3'], 'b':[1, 2, 3, 4], 'c':['c0', 'c1', 'c2', 'c3']}, index=[0, 1, 2, 3]) display(df1) df2 = pd.DataFrame({'b':[5, 6, 7, 8], 'c':['c0', 'c1', 'c2'.. ๋”๋ณด๊ธฐ
3/17 ๋ชฉ ๋ชฉ์š”์ผ! ์˜ค๋Š˜์€ ์™ธ๋ถ€ resource๋ฅผ ์ด์šฉํ•ด์„œ DataFrame์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋ฐฐ์šด๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์€ CSV ํŒŒ์ผ ์‚ฌ์šฉ, ๋‘ ๋ฒˆ์งธ๋Š” MySQL ์•ˆ์— DB๋กœ๋ถ€ํ„ฐ SQL ์ด์šฉํ•ด DataFrame์„ ์ƒ์„ฑ - SQL ์ง์ ‘ or ORM ๋ฐฉ์‹(Django) Jupyter Notebook๊ณผ MySQL ์—ฐ๋™์‹œํ‚ค๊ธฐ ์œ„ํ•ด Anaconda Prompt๋กœ ์™ธ๋ถ€ ๋ชจ๋“ˆ ์„ค์น˜ conda activate machine conda install pymysql 1. MySQL์— ์ƒˆ๋กœ์šด schema ์ƒ์„ฑ ํ›„ ๋ฉ”๋‰ด์—์„œ Open SQL Script๋กœ DB ์—ด๊ธฐ ์ƒˆ๋กœ์šด Query Tab ์—ด๋ฆฌ๋ฉด ๋ฒˆ๊ฐœ ๋ˆŒ๋Ÿฌ์ฃผ๊ณ , ์•ˆ์— ์žˆ๋Š” DB ํ™•์ธ create database lecture_0317; use lecture_0317; select * fro.. ๋”๋ณด๊ธฐ
3/16 ์ˆ˜ ์ˆ˜์š”์ผ! ์–ด์ œ~์˜ค๋Š˜๊นŒ์ง€ Numpy! ์˜ค๋Š˜ ์˜คํ›„~์ด๋ฒˆ ์ฃผ๊นŒ์ง€ Pandas ์ง„๋„! Anaconda Prompt์—์„œ Jupyter notebook ์‹คํ–‰ conda activate machine jupyter notebook 1. ํ–‰๋ ฌ๊ณฑ ์—ฐ์‚ฐ์€ ์•ž์ชฝ์˜ 2์ฐจ์› matrix ์—ด๊ณผ ๋’ค์ชฝ์˜ 2์ฐจ์› matrix ํ–‰ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ™์•„์•ผ ํ•จ. (3, 2) * (2, 2) import numpy as np arr1 = np.array([[1,2,3], [4,5,6]]) # (2,3) arr2 = np.array([[4,5],[6,7],[8,9]]) # (3,2) print(np.matmul(arr1, arr2)) # matmul() ํ•จ์ˆ˜ ์‚ฌ์šฉํ•ด์„œ ๊ณ„์‚ฐ. ๊ฒฐ๊ณผ๋Š” (2,2) # [[ 40 46] # [ 94 109]] 2. ์ „์น˜ํ–‰๋ ฌ(.. ๋”๋ณด๊ธฐ

728x90