๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

728x90

numpy

4/6 ์ˆ˜ ์ˆ˜์š”์ผ! ์˜ค๋Š˜์€ Multinomial Classification์„ ๋ฐฐ์šด๋‹ค. Linear Regression(์—ฐ์†์ ์ธ ์ˆซ์ž ๊ฐ’ ์˜ˆ์ธก)์ด ๋ฐœ์ „ํ•œ ๊ฒƒ์ด Logistic Regression → Classification(๋ถ„๋ฅ˜๋ฅผ ํŒ๋‹จํ•˜๋Š” ์˜ˆ์ธก) - Binary Classification(์ดํ•ญ๋ถ„๋ฅ˜) - Multinomial Classification(๋‹คํ•ญ๋ถ„๋ฅ˜) Logistic Regression์€ ์ด์ง„ ๋ถ„๋ฅ˜์— ํŠนํ™”๋จ SKlearn์ด ์ œ๊ณตํ•˜๋Š” ๋ถ„๋ฅ˜๊ธฐ์ธ Gradient Descent(๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•)๊ฐ€ ๋ฐœ์ „ํ•œ ํ˜•ํƒœ์ธ SGD Classifier(Stochastic Gradient Descent, ํ™•๋ฅ ์  ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•) 1. Binary Classification - ์œ„์Šค์ฝ˜์‹  ์œ ๋ฐฉ์•” ๋ฐ์ดํ„ฐ by Gradient Descent Cl.. ๋”๋ณด๊ธฐ
3/29 ํ™” ํ™”์š”์ผ! ์˜ค๋Š˜์€ ์–ด์ œ ๋ฐฐ์šด Simple Linear Regression(๋‹จ์ˆœ ์„ ํ˜• ํšŒ๊ท€)์„ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•œ๋‹ค. 1. Training Data Set ์ค€๋น„ : Data pre-processing(๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ). ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ์ค€๋น„ 2. Linear Regression Model์„ ์ •์˜ : y = Wx+b(์˜ˆ์ธก ๋ชจ๋ธ). hypothesis(๊ฐ€์„ค) 3. ์ตœ์ ์˜ W(weight, ๊ฐ€์ค‘์น˜), b(bias, ํŽธ์ฐจ)๋ฅผ ๊ตฌํ•˜๋ ค๋ฉด loss function(์†์‹คํ•จ์ˆ˜)/cost function(๋น„์šฉํ•จ์ˆ˜) → MSE 4. Gradient Descent Algorithm(๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•) : loss function์„ ํŽธ๋ฏธ๋ถ„(W, b) × learning rate 5. ๋ฐ˜๋ณตํ•™์Šต ์ง„ํ–‰ 1. Training Dat.. ๋”๋ณด๊ธฐ
3/28 ์›” ์›”์š”์ผ! ๊ธˆ์š”์ผ์— ์ด์–ด ๋จธ์‹ ๋Ÿฌ๋‹ ๋“ค์–ด๊ฐ„๋‹ค~ Weak AI์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๋“ค : ์ง€๋„ ํ•™์Šต, ๋น„์ง€๋„ ํ•™์Šต, ๊ฐ•ํ™” ํ•™์Šต 1. Regression(ํšŒ๊ท€) : ๋ฐ์ดํ„ฐ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์กฐ๊ฑด๋“ค์˜ ์˜ํ–ฅ๋ ฅ์„ ๊ณ ๋ คํ•ด์„œ, ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์กฐ๊ฑด๋ถ€ ํ‰๊ท ์„ ๊ตฌํ•˜๋Š” ๊ธฐ๋ฒ• * ํ‰๊ท ์„ ๊ตฌํ•  ๋•Œ ์ฃผ์˜ํ•ด์•ผ ํ•  ์  : ํ‰๊ท ์„ ๊ตฌํ•˜๋Š” ๋ฐ์ดํ„ฐ์— ์ด์ƒ์น˜๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ ๋Œ€ํ‘œ๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ค์›€. ์ •๊ทœ๋ถ„ํฌ์—ฌ์•ผ ํ•จ! ๊ณ ์ „์  ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ(Classical Linear Regression Model) ๋‹จ์ˆœ ์„ ํ˜• ํšŒ๊ท€(Simple Linear Regression) import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame({'๊ณต๋ถ€์‹œ๊ฐ„(x)': [1,2,3.. ๋”๋ณด๊ธฐ
3/21 ์›” ์›”์š”์ผ! ์˜ค๋Š˜์€ Pandas์˜ DataFrame(DataFrame ์—ฐ๊ฒฐ · ๊ฒฐํ•ฉ, Mapping, Grouping)์„ ๋งˆ๋ฌด๋ฆฌ ์ง“๊ณ , ๋‚ด์ผ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐํ™”์— ๋Œ€ํ•ด ๋ฐฐ์šด๋‹ค. 1. DataFrame ์—ฐ๊ฒฐ : pd.concat(). default๋Š” ํ–‰ ๋ฐฉํ–ฅ์œผ๋กœ ์—ฐ๊ฒฐ. ์ปฌ๋Ÿผ ๋ช…์ด ๊ฐ™์€ ๊ฒƒ๋“ค์ด ์„œ๋กœ ๊ฒฐํ•ฉ๋จ import numpy as np import pandas as pd df1 = pd.DataFrame({'a':['a0', 'a1', 'a2', 'a3'], 'b':[1, 2, 3, 4], 'c':['c0', 'c1', 'c2', 'c3']}, index=[0, 1, 2, 3]) display(df1) df2 = pd.DataFrame({'b':[5, 6, 7, 8], 'c':['c0', 'c1', 'c2'.. ๋”๋ณด๊ธฐ
3/16 ์ˆ˜ ์ˆ˜์š”์ผ! ์–ด์ œ~์˜ค๋Š˜๊นŒ์ง€ Numpy! ์˜ค๋Š˜ ์˜คํ›„~์ด๋ฒˆ ์ฃผ๊นŒ์ง€ Pandas ์ง„๋„! Anaconda Prompt์—์„œ Jupyter notebook ์‹คํ–‰ conda activate machine jupyter notebook 1. ํ–‰๋ ฌ๊ณฑ ์—ฐ์‚ฐ์€ ์•ž์ชฝ์˜ 2์ฐจ์› matrix ์—ด๊ณผ ๋’ค์ชฝ์˜ 2์ฐจ์› matrix ํ–‰ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ™์•„์•ผ ํ•จ. (3, 2) * (2, 2) import numpy as np arr1 = np.array([[1,2,3], [4,5,6]]) # (2,3) arr2 = np.array([[4,5],[6,7],[8,9]]) # (3,2) print(np.matmul(arr1, arr2)) # matmul() ํ•จ์ˆ˜ ์‚ฌ์šฉํ•ด์„œ ๊ณ„์‚ฐ. ๊ฒฐ๊ณผ๋Š” (2,2) # [[ 40 46] # [ 94 109]] 2. ์ „์น˜ํ–‰๋ ฌ(.. ๋”๋ณด๊ธฐ
3/15 ํ™” ํ™”์š”์ผ! ์šฐ์˜ค์˜ค์˜ค ๋“œ๋””์–ด ์ „๊ณต์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ํ•™์Šต ์‹œ์ž‘! ์ˆ˜์—… ํ›„์—” ํ˜„์—… ๊ฐœ๋ฐœ์ž(๋ฌด๋ ค ์—”์”จ์†Œํ”„ํŠธ, ๋„ฅ์Šจ์ฝ”๋ฆฌ์•„๋ฅผ ๊ฑฐ์ณ ์ง๋ฐฉ)์˜ ์ทจ์—…ํŠน๊ฐ•์ด ์žˆ๋‹ค~ '์ปค๋ฆฌ์–ดํŒจ์Šค ๊ฐ€์ด๋“œ' : ์ปค๋ฆฌ์–ด ๋งต, ๊ธฐ์—…๋ณ„ ์žฅ๋‹จ์ , ํ˜„์—… ๊ฐœ๋ฐœ์ž์˜ ์กฐ์–ธ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘ · ๊ฐ€๊ณต(Data Handling)์ด Machine Learning์˜ 60~80%๋ฅผ ์ฐจ์ง€ํ•จ ์ •์ œ๋œ ๋ฐ์ดํ„ฐ → ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ 1. Anaconda Prompt์—์„œ Jupyter notebook ์‹คํ–‰ 2022.01.18 - [๋ฉ€ํ‹ฐ์บ ํผ์Šค ํ”„๋กœ์ ํŠธํ˜• AI ์„œ๋น„์Šค ๊ฐœ๋ฐœ 5ํšŒ์ฐจ/Python] - 1/18 ํ™” 2. Python module ์ค‘ Pandas๊ฐ€ data handling์— ์‚ฌ์šฉ๋จ ← data๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ์— ์š”๊ธดํ•˜๊ฒŒ ๋งŒ๋“ค์–ด์คŒ Pandas์˜ data-type์„ ๊ตฌ์„ฑํ•˜๊ณ  ์žˆ๋Š” Numpy mo.. ๋”๋ณด๊ธฐ

728x90